
Agile Principles and Open Source Software
Development: A Theoretical and Empirical

Discussion

Stefan Koch

Vienna University of Economics and BA, Department of Information Business,
Augasse 2-6, A-1190, Vienna, Austria

stefan.koch@wu-wien.ac.at

Abstract. In the last years, two movements have been widely dis-
cussed in the software development community: Agile and open source
development. Both have faced some of the same criticism, and both
claim some of the same benefits. This paper poses the question whether
open source software development is in accordance with agile software
development principles and therefore well within the planning spectrum.
To this end, the general principles of both movements are detailed and
compared, and some empirical data from open source software devel-
opment projects is given on any similarities and dissimilarities uncovered.

Keywords. Software Development, Agile, Open Source, Software Met-
rics, Coordination

1 Introduction

Agile software development has been proposed as a solution to problems resulting
from the turbulent business and technology environment faced by organizations
engaged in software development [8]. Several methods like Extreme Program-
ming (XP) [1], Scrum, Lean Development or Adaptive Software Development
exist that embody the principles of this approach as laid down in the Manifesto
for Agile Software Development. While there is some evidence, mostly based on
singular projects, of positive practical application of these methods, there is a
lively discussion on this topic [2,13]. On the other hand, Boehm in his analysis
[3] sees both the agile and more plan-driven approaches as having a responsible
center, and argues for a risk analysis of a project’s characteristics for determin-
ing the right balance of disciplines in each case [4]. All of these contributions
have not yet ended the ongoing debate, even if some first empirical results on
both use of agile principles and the results in cost, productivity and quality
have already been published [15], and seem an important step towards this end.
There is one point in the discussion that has as yet been largely omitted: Like
agile development, there has been another movement which has received much
attention in the last years: Open source software development. Also in this case
there is considerable debate about benefits and efficiency [11,5,17]. While any

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 85–93, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



86 S. Koch

discussion of agile development contains the words cowboy coding, unplanned
and undisciplined hacking or similar terms, from which this movement is seen
as different, the term open source is not mentioned. Many of the same argu-
ments brought to bear against agile development are also faced by open source
development. So, using the planning spectrum introduced by Barry Boehm, the
question is where to place open source development? On the far end with the
hackers or more towards XP and agile methods? In order to facilitate this classi-
fication, this article seeks to compare both methods, and tries to give some first
empirical results on any similarities and dissimilarities. Besides clarifying terms
and classifications, open source projects and their wealth of data [10,12] might
form additional testbeds for agile development methods, and both movements
might learn and benefit from each other.

2 Agile Software Development

Both the business and technology environment continue to change at an increas-
ing pace. In software projects, this leads to more frequent changes during the
life cycle. Therefore the main question is how to better handle these changes,
not stop them by anticipating and including them in the requirements definition,
while still achieving high quality and timeliness. To this end, a group of people
created the Manifesto for Agile Software Development that values individuals
and interactions over processes and tools, working software over comprehensive
documentation, customer collaboration over contract negotiation, responding to
change over following a plan, while explicitly acknowledging the value of the
latter items. Furthermore there is a set of principles giving more details, stress-
ing the importance of quality in design, especially in simplicity, the honesty of
working code, delivered early and continuously, for communication between de-
velopers and sponsors, short feedback loops, the importance of motivated and
competent individuals interacting face to face and welcoming change even late
in the development. There has been a lot of criticism, one of them being that
planning, processes and documentation are essential, and agile development is
an excuse for hackers to do as they like, coding away without planning or design
[13]. Barry Boehm on the other hand sees agile methods as having a responsible
center with a fair amount of planning, and as an important advantage of this
movement to draw hackers away from pure hacking [3]. Another point of criti-
cism is the reliance on individual competency, craftsmanship, working together
in self-organizing teams in intense collaboration including customers [6]. It is
argued that the number of developers possessing excellent technical knowledge
paired with the necessary social skills is naturally limited. Also the possible size
of agile development teams is discussed. While successful projects with up to
250 people are cited [6], others see a limit of 15 to 20 people.

3 Open Source Software Development

Open source (or free) software has generated much interest in the last years, espe-
cially following the rise of Linux and several similar projects like GNU project’s



Agile Principles and Open Source Software Development 87

utilities and libraries, the Perl and Tcl programming languages, and the Apache
Web server. Regarding these examples, the notion that software of considerable
quality can result from this form of development can not be dismissed. Open
source software (using the Open Source Definition) is software under a license
that fulfills several criteria, giving the user more rights than most other terms
of distribution. These include the free redistribution, the inclusion of the source
code, the possibility for modifications and derived works, which must be allowed
to be distributed under the same terms as the original software, and some others.
One example for a license that fits these criteria is the well-known GNU General
Public License (GPL) advocated by the Free Software Foundation, which im-
poses even stricter regulations. While these definitions pertain to the legal terms
of distribution, there is also a distinct form of development associated with open
source software. The guiding principle is that by sharing source code, developers
cooperate under a model of rigorous peer-review and take advantage of ”par-
allel debugging” that leads to innovation and rapid advancement in developing
and evolving software products. The best and most widely used description of
this development form is an article by Raymond titled ’The Cathredal and the
Bazaar’, in which he contrasts the cathredal model of commercial software de-
velopment with the bazaar model of open source using fetchmail as a case study
[14]. In this article, he gives several lessons, which form the guiding principles of
this form of software development. These therefore constitute the counterpart of
the principles behind the agile manifesto and need to be compared with those
and reality in open source projects. The criticism faced by the open source devel-
opment paradigm has several main arguments, the first being that finding and
correcting bugs late in the life cycle during coding incurs very high costs [11], a
point also discussed in the context of agile development [16]. In addition, effort
by people looking for bugs, but not being able to find or fix them, is hidden
by spreading it. The inattendance to analysis, requirements engineering and de-
sign causes additional limitations due to architectural problems, hiding of useful
code, etc. On the other hand it is argued that due to the high modularity of
open source code, which is much more stringently enforced to allow more people
to work in parallel, and because the context of an error is not lost due to fast
release cycles, the costs for fixing bugs in code are not much higher [5].

4 Comparison and Empirical Data

Using several key areas mostly denoted by the principles of agile development
and lessons from Raymond’s description of open source software development,
both movements are compared. Empirical data is used where appropriate to
further emphasize and confirm any similarities and dissimilarities. The data em-
ployed is derived from several empirical analyses including Apache and Mozilla
[12], GNOME [10] and an analysis of Sourceforge, a repository providing free
services like version-control or mailing lists for several thousand hosted open
source projects. The main idea for this empirical research was to use existing
data on the projects available to the public, especially the version control sys-



88 S. Koch

tems that stores every single check-in of a file by a programmer with additional
information like the number of lines-of-code changed, and mailing lists.

4.1 Software Process

Both agile and open source development are no description of a software process
as envisioned by this research area. They consist of a set of principles for a
software project. While agile in contrast to open source development has several
approaches and methods that embody these principles, some of these, e.g. XP, do
not have much more detail on the software process, but also restrict themselves to
general guidelines. On the other hand, several open source projects have devised
elaborate process descriptions, e.g. for release management [9].

4.2 Craftsmanship, Chief Programmers, and Individuals

Agile software development focuses on individual competency and on motivated
individuals (’Build projects around motivated individuals.’). This attitude is
also described by the term craftsmanship [6], and manifests in pair program-
ming, collective code ownership and mentoring in XP, or chief programmers in
FDD. In open source development, Raymond gives a possible explanation for
the free effort contributed by using the craftsmanship model, in which the pure
artistic satisfaction of designing beautiful software and making it work drives
the developers. Empirical data on open source projects show an interesting dis-
tribution of the effort invested. While a large number of people participate in
the development by giving feedback or testing, a smaller number contributes to
the source code, and an even smaller number is responsible for the vast majority
of the outcome. In the Apache project, while over 3,000 people submitted prob-
lem reports, a core group of 15 programmers out of 400 is responsible for 88%
of the lines-of-code [12]. In the GNOME project, which is much more diverse
containing several sub-projects, the top 15 of 301 programmers added 48% of
the total lines-of-code, while clustering hints at a still smaller 11 person core
programmer group. In total, about 1,900 people participated by showing some
activity on the mailing lists [10]. Analysis of the Sourceforge repository shows
that of more than 12,000 programmers in 8,600 projects, the top 10% are re-
sponsible for about 80% of the total source code. Regarding the distribution in
single projects, all 65 projects with more than 500k lines-of-code added and at
least 5 developers were analyzed. These projects range up to 88 programmers
with a mean of 17 persons per project. In the mean, only the top 20.4% of
the participating programmers (2.8 people) were necessary to reach 80% of the
project’s source code. In open source development, each project therefore seems
to center around a small number of highly competent and motivated individu-
als. These individuals, at least some of them, will need to have the social and
communication skills necessary to bring larger numbers of people to the project,
and hold them there. Open source development can therefore be termed chief
programmer teams, as a large number of supporters center around a small inner
circle of programmers responsible for most part of actual design and coding.



Agile Principles and Open Source Software Development 89

4.3 Team Size

While successful agile projects of up to 250 people are cited [6], most authors see
a size limit at about 15 to 20 persons due to the tightly coordinated teamwork
necessary. Both of these ranges are within the bounds of open source projects.
As demonstrated above, large projects like Apache or GNOME number a few
hundred programmers, but there is empirical evidence for a very small core
team in the range of 10 to 20 persons. In smaller open source projects, these
numbers decrease accordingly, down to one highly motivated developer with a
small team of supporters. The core team seems to have a size of about 5 to
20%, resulting in a group within whom frequent and even personal interactions
are easier. While Boehm in his analysis of agile development correctly remarks
that 49.9999% of the world’s software developers are below average, he concedes
that a project does not necessarily require uniformly high-capability people.
This seems to exactly mirror the situation in open source projects, where highly
capable chief programmers are supported by a larger number of participants.

4.4 Self-Organizing Teams

Agile development stresses the importance of self-organizing teams that are able
to rapidly adjust to changing requirements and new challenges (’The best ar-
chitectures, requirements, and designs emerge from self-organizing teams.’, ’At
regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.’). This requires common focus, mutual trust
and respect, and intense collaboration. In open source development, a common
focus is ensured, as all participants voluntarily join and therefore follow the goals,
which might available implicitly in a vision or example like an existing commer-
cial system. In order to efficiently apply the manpower available to the project,
self-organization is strictly necessary. As each participant needs only to do what
he wants, self-selection will lead to each one doing what he does best and most
efficiently. As Raymond writes ’...open source hackers organize themselves for
maximum productivity by self-selection...’. For the GNOME project it has been
shown that the number of participating programmers in each month, at least un-
til the time of operation, closely follows the efficient manpower distribution pro-
posed for commercial software projects [10]. As there is no central management,
the community of developers really seems to be able to organize itself accord-
ingly. Of course, coordination is still necessary also in this form of project, and
data from the GNOME project shows that the activity on the mailing lists was
strongest during the build-up in active programmers, while declining afterwards
[10]. This hints at some sort of briefing or introduction necessary for newcomers.
If the data of the GNOME project’s source-code versioning system is analyzed,
in the mean only 1.8 programmers are found to work together on a single file,
even larger files are worked on by only a few programmers. This indicates a divi-
sion of labour on a higher level. In the Apache project [12], data on the problem
reports show that this activity is more widely spread than actual programming,
the top 15 people only produced 5% of the total reports, and only three of these
were also among the core programmers. This again hints at a high degree of



90 S. Koch

division of labour, with the tasks that can more easily be performed in parallel
being spread out more than others. In the Sourceforge repository, in the mean 1.2
programmers work an a given file, but as this number might be distorted by the
large number of small projects, analysis of the 65 large projects (more than 500k
lines-of-code, at least 5 developers) was again undertaken. While the number
within this group is slightly higher with 1.5 programmers, it is still rather small
and near the GNOME project, further enhancing the findings given above. In
addition, when the data from the Sourceforge repository is analyzed using text
parsing of the commit log messages by the programmers, distinctive names of
design patterns show up at about 10% of the projects. One of the main benefits
often associated with patterns is improved communication between developers.
In fact, there is a significant positive correlation between the number of partici-
pants in a project and the number of different patterns used. This indicates that
larger teams seem to have an increased need for the improved communication
provided by patterns. As this usage is not prescribed, this can be seen as an
additional example of self-organization for maximizing efficiency.

4.5 Team Co-location

Agile development aims at close, personal contact and collaboration within the
development team (’The most efficient and effective method of conveying infor-
mation to and within a development team is face-to-face conversation.’), while
open source development is performed by large numbers of developers scattered
throughout the world [7]. While the empirical data given above suggests that
most work is done by a small inner circle of programmers, which could and also
do meet in person sometimes, that the self-organization works remarkably well,
and is enhanced especially by the Internet medium, this difference remains. In
fact, open source software development sees the Internet with all its tools includ-
ing mailing lists, source code versioning, e-mail, maybe even video-conferencing,
as a means for achieving collaboration that is sufficient (’Provided the develop-
ment coordinator has a medium as least as good as the Internet, and knows how
to lead without coercion, many heads are inevitably better than one.’).

4.6 Customer Interactions

In agile development, the continuos interaction and collaboration with the cus-
tomers is paramount. A short feedback loop is necessary to be able to respond
quickly to new information like changes in the requirements. These principles are
embodied in practices like customer on site in XP. In fact, agile development sees
a development team as spanning organizational boundaries and therefore includ-
ing customers. The same attitude is at the heart of open source development:
Users should join the development community and become co-developers in or-
der to more rapidly improve the software (’Treating your users as co-developers
is your least-hassle route to rapid code improvement and effective debugging.’,
’Release early, release often. And listen to your customer.’, ’The next best thing
to having good ideas is recognizing good ideas from your users. Sometimes the



Agile Principles and Open Source Software Development 91

latter is better.’). Of course, the necessary precondition for this is the availabil-
ity of the source code. Even more so than in XP, there is indeed collective code
ownership. As has been detailed above, in larger open source projects thousands
of people, read users, participate to some degree, not necessarily coding, which
only a minority actively does, but in reporting errors, filing change reports or
claiming additional functionalities and requirements. In the GNOME project,
the nearly 1,900 participants in the mean contributed 10.6 separate postings to
the diverse mailing lists. In the FreeBSD project, 82% of the developers indi-
cated that they received some form of feedback on their code, either as a problem
report or a bugfix performed on the code [9]. Therefore the open source process
is specifically designed to allow customer collaboration, in fact depends on it.

4.7 Early Delivery of Working Code and Feedback

Agile development sees working code as the ’primary measure of progress’. To
use this measure in the collaboration with customers, and in order to ensure
short feedback cycles, frequent releases of working software are intended (’De-
liver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.’). These practices increase the moti-
vation for all participants, allow for easier discussion of the current status and
therefore increased chances to uncover necessary changes and efficient possi-
bilities for incorporating them (’Our highest priority is to satisfy the customer
through early and continuous delivery of valuable software.’). In open source soft-
ware development, frequent releases are also propagated (’Release early, release
often.’). This has several reasons, including that a larger number of users and
co-developers should test und debug the code, thus faster finding and correcting
any errors (’Given a large enough beta-tester and co-developer base, almost ev-
ery problem will be characterized quickly and the fix obvious to someone.’). In
order to minimize the lost time spent by participants looking for problems which
have already been found or even solved, everyone needs to be kept at the current
status. This is achieved by releasing new versions even with only a small number
of changes. During the early days of Linux, new releases could occur daily. In
the FreeBSD project, approximately 200 developers have been granted commit
authority, and any change committed by these individuals results in instant cre-
ation of a new release [9]. There is an additional effect of releasing open source
software often: Keeping developers constantly stimulated and rewarded, as they
have new challenges to rise to, and at the same time see the results of their prior
work take shape in the form of improved software. This motivational aspect has
been mentioned by 81% of the FreeBSD developers [9]. These points correspond
remarkably well: Working software is released often to facilitate change, to keep
the effort for rework under control, to ease collaboration with the users and
customers, and as a primary measure of progress.

4.8 Changing Requirements, Good Design, and Simplicity

Closely connected to frequent releases is the attitude of agile development to-
wards change. As release and feedback cycles are short, changes in the require-



92 S. Koch

ments happening anyhow due to the turbulent environment can easily be uncov-
ered, and can more easily be implemented than at the end of the development
(’Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer’s competitive advantage.’). Incorporating these
changes in addition needs an appropriate design (’Continuous attention to tech-
nical excellence and good design enhances agility.’). Therefore agile development
stresses the importance of having a simple design that allows for easy changes
(’Simplicity - the art of maximizing the amount of work not done - is essential.’)
and refactoring. The same is also inherent in open source development. There
is evidence for both the strive for simple designs allowing for change, and also
refactoring, if not actually using this term. Raymond describes how he changed
to a new development base (’...I’d be throwing away the coding I’d already done
in exchange for a better development base...the first thing I did was reorganize
and simplify...’). It is also evident in the saying ’Plan to throw one away; you
will, anyhow’, originally by Fred Brooks, adopted by the open source community.
This of course also hints at prototyping and feedback from users. Another em-
bodiment of refactoring can be found in the principles ’Often, the most striking
and innovative solutions come from realizing that your concept of the problem
was wrong.’ and ’Good programmers know what to write. Great programmers
know what to rewrite (and reuse).’ from Raymond. The strive for a simple de-
sign is obvious in the saying ’Perfection (in design) is achieved not when there
is nothing more to add, but rather when there is nothing more to take away.’ As
the data from the Sourceforge repository suggests the usage of design patterns,
these could also be used as a target for refactoring later in the life cycle.

5 Conclusion

As both agile and open source development have been hotly debated, claim some
of the same benefits, and face some identical criticism, a comparison seems a log-
ical step. Using their main principles, we have discussed whether open source
development can be seen as an agile form of development. In several areas, amaz-
ing similarities have been found, for example the emphasis on highly skilled in-
dividuals or ’craftsmen’ at the center of a self-organizing development team, the
acceptance and embrace of change by using short feedback loops with frequent
releases of working code, and the close integration and collaboration with the
customers and users. For these points, empirical indications were found that at
least partially confirmed the presence of these agile principles in open source
projects. For example, empirical data suggests that an open source project has a
relatively small inner circle of highly skilled and productive developers, around
which a larger number of participants and users cluster in a highly efficient
self-organization. On the other hand, one major difference showed up, the team
co-location and personal contact demanded by agile development, which is not
seen as a precondition in open source development. In addition, while Boehm
and Turner see small product size as agility homeground [4], open source projects
have undoubtedly been able to realize quite large products, with similar com-
ments applying for safety criticality, as quality assurance is often cited as a main



Agile Principles and Open Source Software Development 93

benefit of open source development. Overall, the question whether the ’hackers’
and ’cowboy coders’ mentioned by the proponents of agile development and oth-
ers are indeed the open source software developers of the world may therefore
not be so easy to answer as it might seem at first glance. Additional research
into the real workings of both agile and open source projects is in order, both
to compare them to more plan-driven methods and also among each other.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading, Mass. (1999)

2. Beck, K., Boehm, B.: Agility through Discipline: A Debate. IEEE Computer 36
(2003) 44–46

3. Boehm, B.: Get Ready for Agile Methods, with Care. IEEE Computer 35 (2002)
64–69

4. Boehm, B., Turner, R.: Using Risk to Balance Agile and Plan-Driven Methods.
IEEE Computer 36 (2003) 57–66

5. Bollinger, T., Nelson, R., Self, K.M., Turnbull, S.J.: Open-Source Methods: Peering
through the Clutter. IEEE Software 16 (1999) 8–11

6. Cockburn, A., Highsmith, J.: Agile Software Development: The People Factor.
IEEE Computer 34 (2001) 131–133

7. Dempsey, B.J., Weiss, D., Jones, P., Greenberg, J.: Who is an Open Source Software
Developer? Communications of the ACM 45 (2002) 67–72

8. Highsmith, J., Cockburn, A.: Agile Software Development: The Business of Inno-
vation. IEEE Computer 34 (2001) 120–122

9. Jorgensen, N.: Putting it All in the Trunk: Incremental Software Sevelopment in
the FreeBSD Open Source Project. Information Systems Journal 11 (2001) 321–
336

10. Koch, S., Schneider, G.: Effort, Cooperation and Coordination in an Open Source
Software Project: Gnome. Information Systems Journal 12 (2002) 27–42

11. McConnell, S.: Open-Source Methodology: Ready for Prime Time? IEEE Software
16 (1999) 6–8

12. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Transactions on Software En-
gineering and Methodology 11 (2002) 309–346

13. Rakitin, S.R.: Manifesto Elicits Cynicism. IEEE Computer 34 (2001) 4
14. Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly, Cambridge, Mass. (1999)
15. Reifer, D.J.: How Good Are Agile Methods? IEEE Software 19 (2002) 16–18
16. Williams, L.: The XP Programmer: The Few-Minutes Programmer. IEEE Software

20 (2003) 16–20
17. Wilson, G.: Is the Open-Source Community Setting a Bad Example? IEEE Soft-

ware 16 (1999) 23–25


	Introduction
	Agile Software Development
	Open Source Software Development
	Comparison and Empirical Data
	Software Process
	Craftsmanship, Chief Programmers, and Individuals
	Team Size
	Self-Organizing Teams
	Team Co-location
	Customer Interactions
	Early Delivery of Working Code and Feedback
	Changing Requirements, Good Design, and Simplicity

	Conclusion



